# Solution d'un problème posé par Martin Gardner en 1976.

Mais qui résoudra son autre problème posé en 1996 ?

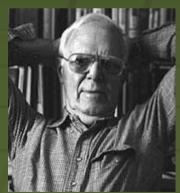


Christian Boyer G4G, Paris, 21 octobre 2010



# Problème du plus petit cube magique parfait

"Is there a perfect magic cube of order 5? No one knows."



#### Martin Gardner

Scientific American (1976)

Time Travel and Other Mathematical Bewilderments (1988)

(ici en 1988)

#### Ordres 1 et 2

- Réglons une fois pour toute le sort de ces deux ordres à la fois pour les carrés et les cubes magiques
- Ordre 1
  - « je suis magique... mais stupide... »

1

- Ordre 2
  - « je suis un vilain copieur » si a + b = S et si a + c = S, ... alors b = c...

a b c d

### Cube magique d'ordre 3

Il existe un seul carré magique d'ordre 3

| Mais il existe q   | uatre cubes r | magiques d' | ordre 3 (aux r | otations et s  | vmétries r | orès) |
|--------------------|---------------|-------------|----------------|----------------|------------|-------|
| 1110110 11 0111010 | 33333333      |             | 0.0.00 0 (3.5  | 513115115 51 5 | ,          |       |

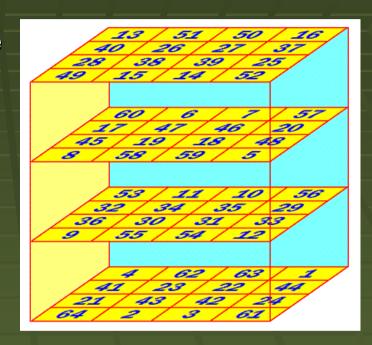
| 1 17  | 24 | 2  | 18 | 22 | 10 | 26 | 6  |   | 12 | 26 | 4  |
|-------|----|----|----|----|----|----|----|---|----|----|----|
| 15 19 | 8  | 24 | 1  | 17 | 24 | 1  | 17 |   | 23 | 1  | 18 |
| 26 6  | 10 | 16 | 23 | 3  | 8  | 15 | 19 |   | 7  | 15 | 20 |
|       |    |    |    |    |    |    |    |   |    |    |    |
| 23 3  | 16 | 15 | 19 | 8  | 23 | 3  | 16 |   | 22 | 3  | 17 |
| 7 14  | 21 | 7  | 14 | 21 | 7  | 14 | 21 |   | 9  | 14 | 19 |
| 12 25 | 5  | 20 | 9  | 13 | 12 | 25 | 5  | 1 | 11 | 25 | 6  |
|       |    |    |    |    |    |    |    |   |    |    |    |
| 18 22 | 2  | 25 | 5  | 12 | 9  | 13 | 20 |   | 8  | 13 | 21 |
| 20 9  | 13 | 11 | 27 | 4  | 11 | 27 | 4  |   | 10 | 27 | 5  |
| 4 11  | 27 | 6  | 10 | 26 | 22 | 2  | 18 |   | 24 | 2  | 16 |

- Même somme pour les n² lignes, n² colonnes, n² piles et 4 grandes diagonales
  - $S = n(n^3 + 1) / 2$  pour l'ordre 3 : 31 alignements avec  $S = 3(3^3 + 1) / 2 = 42$
- Mais les petites diagonales ne donnent pas toutes la bonne somme
  - Exemple premier cube :  $1 + 19 + 10 = 30 \neq 42$
- Un cube est dit « parfait » s'il a en plus <u>toutes</u> ses diagonales magiques
  - (3n² + 6n + 4) alignements doivent donc donner la même somme S
- Aucun des quatre cubes magiques existants d'ordre 3 n'est parfait
  - Un cube magique parfait d'ordre 3 est donc impossible

## Cube magique d'ordre 4

■ 1640, Fermat envoie à Mersenne ce cube





- Il annonce à Mersenne 72 alignements magiques
  - Mais son cube n'en a réellement que 64. C'est quand même excellent, puisque meilleur que les 3n² + 4 = 52 alignements demandés pour un cube magique
- Un cube magique parfait d'ordre 4 sera ensuite prouvé impossible
  - Richard Schroeppel prouve mathématiquement en 1972 qu'il est impossible que les 3n² + 6n + 4 = 76 alignements soient magiques

# Histoire des cubes magiques parfaits

| 3    | Impossible             |                                   |
|------|------------------------|-----------------------------------|
| 4    | Impossible, Schroeppel | 1972                              |
| 5    | Pb de Martin Gardner   | ?                                 |
| 6    | Walter Trump           | sept. 2003                        |
| 7    | Révérend A.H. Frost    | 1866                              |
| 8    | Gustavus Frankenstein  | 1875                              |
| •••  | (nombreux autres)      | XIX <sup>e</sup> -XX <sup>e</sup> |
| 8192 | Christian Boyer        | début 2003                        |

Presque parfait, par Fermat, 1640

Schroeppel: si solution, centre=63



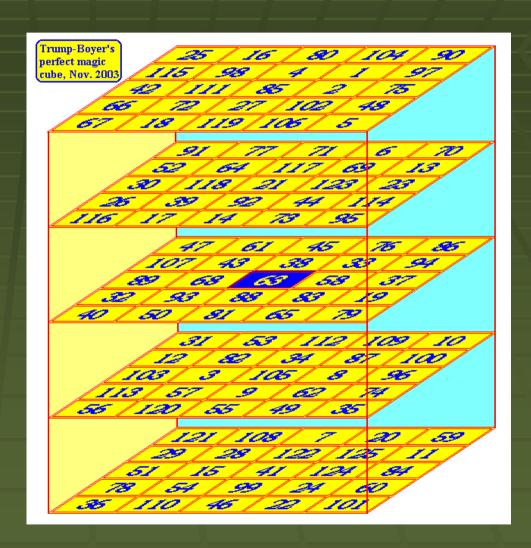




Cube tétramagique par **SCIENCE** 

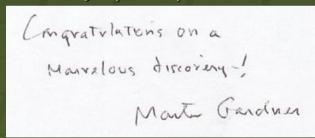
### Le plus petit cube magique parfait

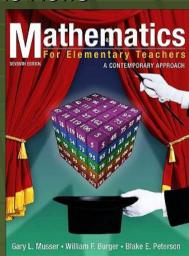
- La réponse au problème de Gardner est « Yes » !
- Cube trouvé en nov. 2003, avec Walter Trump
- Tous les entiers de 1 à 125 (= 5<sup>3</sup>)
- Son centre est 63
- Ses 109 alignements ont la même somme égale à 315 :
  - 25 lignes
  - 25 colonnes
  - 25 piles
  - 4 grandes diagonales
  - 30 petites diagonales



#### Nombreuses retombées

- Article signé dans La Recherche
- Grandes satisfactions
  - Annonce par Eric Weisstein, MathWorld Headline News
  - Beaux articles dans Le Figaro, Le Point, ...
  - Couverture d'un livre mathématique américain
  - Lettre sympathique de Martin Gardner





- Mais un curieux mélange de joie et d'amertume avec
  - La une du *Monde…* qui titre :
    - « Une découverte mathématique qui ne sert à rien »

## Problème du carrés

"Martin LaBar, in *The College Mathematics Journal*, January 1984, asked if a 3x3 magic square exists with nine distinct square numbers. (...) Neither such a square nor a proof of impossibility has been found. (...) I here offer \$100 to the first person to construct such a square."

| a <sup>2</sup> | b <sup>2</sup> | C <sup>2</sup> |
|----------------|----------------|----------------|
| d <sup>2</sup> | e <sup>2</sup> | f <sup>2</sup> |
| g <sup>2</sup> | h <sup>2</sup> | <b>j</b> 2     |

Martin Gardner

Quantum (1996)

#### Carrés de carrés

|          |                | -              | £ 30           |
|----------|----------------|----------------|----------------|
|          | a²             | b <sup>2</sup> | C <sup>2</sup> |
| <u> </u> | d <sup>2</sup> | e <sup>2</sup> | f²             |
|          | g ²            | h <sup>2</sup> | i²             |

|     | 68 <sup>2</sup> | 29 <sup>2</sup>        | 41 <sup>2</sup> | 37 <sup>2</sup> |
|-----|-----------------|------------------------|-----------------|-----------------|
| aw  | 17 <sup>2</sup> | 31 <sup>2</sup>        | 79 <sup>2</sup> | 32 <sup>2</sup> |
| 100 | 59º             | 28 <sup>2</sup>        | 23 <sup>2</sup> | 61 <sup>2</sup> |
| 311 | 11 <sup>2</sup> | <i>77</i> <sup>2</sup> | 82              | 49º             |

| <b>1</b> 2      | <b>2</b> º      | 31 <sup>2</sup> | 34                     | 20º             |
|-----------------|-----------------|-----------------|------------------------|-----------------|
| 22º             | 162             | 13 <sup>2</sup> | 5-                     | 21 <sup>2</sup> |
| 11 <sup>2</sup> | 23 <sup>2</sup> | 10º             | <b>24</b> <sup>2</sup> | <b>7</b> 2      |
| 12 <sup>2</sup> | 15²             | 9               | 27 <sup>2</sup>        | 14 <sup>2</sup> |
| 25 <sup>2</sup> | 19 <sup>2</sup> | <del>8</del> 2  | 62                     | 17º             |

- 1770 : carré 4x4 de carrés d'Euler envoyé à Lagrange
- Puis Euler publie sa méthode, secret du carré envoyé à Lagrange (a, b, c, d, p, q, r, s) = (5, 5, 9, 0, 6, 4, 2, -3)
- 2005 : carré 5x5 dans mon article du Mathematical Intelligencer



à Saint- leters bourg

votre très humble et très obéessent Serviseur L. Euler

| (+ap+bq+cr+ds)2 | (+ar-bs-cp+dq)2 | (-as-br+cq+dp)2 | (+aq-bp+cs-dr)2 |
|-----------------|-----------------|-----------------|-----------------|
| (-aq+bp+cs-dr)2 | (+as+br+cq+dp)2 | (+ar-bs+cp-dq)2 | (+ap+bq-cr-ds)2 |
| (+ar+bs-cp-dq)2 | (-ap+bq-cr+ds)2 | (+aq+bp+cs+dr)2 | (+as-br-cq+dp)2 |
| (-as+br-cq+dp)2 | (-aq-bp+cs+dr)2 | (-ap+bq+cr-ds)2 | (+ar+bs+cp+dq)2 |

Bibliothèque de l'Institut de France Photo C. Boyer

### Solution 3x3 proche avec 9 carrés

| 127 <sup>2</sup>      | 46 <sup>2</sup>  | 58 <sup>2</sup> |
|-----------------------|------------------|-----------------|
| <b>2</b> <sup>2</sup> | 113 <sup>2</sup> | 94 <sup>2</sup> |
| 74 <sup>2</sup>       | 82 <sup>2</sup>  | 97 <sup>2</sup> |

- Obtenu par informatique, et indépendamment
  - 1996 : Lee Sallows, Université de Nijmegen, Pays-Bas
  - 1996 : Michaël Schweitzer, Göttingen, Allemagne
- OK pour les 9 entiers carrés, mais... 7 sommes correctes sur 8
  - S2 = 21609 pour 3 lignes, 3 colonnes, 1 diagonale (tiens, épatant, cette somme est aussi un carré = 147², pourquoi ?)
  - Hélas S2 = 38307 pour l'autre diagonale
- Beaucoup d'autres solutions connues avec 7 sommes correctes

# Edouard Lucas a été le premier à proposer le problème 3x3



- En 1876, dans la rarissime revue
   Nouvelle Correspondance Mathématique
   du mathématicien belge Eugène Catalan
- Donc plus d'un siècle avant Martin LaBar à qui Martin Gardner attribuait le problème
- Solution paramétrique d'un carré semi-magique
  - 6 sommes correctes  $S2 = (p^2+q^2+r^2+s^2)^2$

| $(p^2 + q^2 - r^2 - s^2)^2$ | [2(qr + ps)] <sup>2</sup>   | [2(qs – pr)] <sup>2</sup>   |  |
|-----------------------------|-----------------------------|-----------------------------|--|
| [2(qr – ps)] <sup>2</sup>   | $(p^2 - q^2 + r^2 - s^2)^2$ | [2(rs + pq)] <sup>2</sup>   |  |
| [2(qs + pr)] <sup>2</sup>   | [2(rs - pq)] <sup>2</sup>   | $(p^2 - q^2 - r^2 + s^2)^2$ |  |

## Plus petits carrés possibles avec la méthode de Lucas

- 6 sommes (3 lignes, 3 colonnes)
  - (p, q, r, s) = (1, 2, 4, 6)
  - $S2 = (1^2 + 2^2 + 4^2 + 6^2)^2 = 57^2$

| 47 <sup>2</sup>       | 28 <sup>2</sup> | 16 <sup>2</sup> |
|-----------------------|-----------------|-----------------|
| <b>4</b> <sup>2</sup> | 23 <sup>2</sup> | 52 <sup>2</sup> |
| 32 <sup>2</sup>       | 44 <sup>2</sup> | 17 <sup>2</sup> |

- Sommes, Lucas prouve mathématiquement que sa méthode ne permet pas un carré entièrement magique
- 7 sommes (3 lignes, 3 colonnes, et 1 diagonale) Lucas n'avait pas vu que sa méthode le permettait
  - (p, q, r, s) = (1, 3, 4, 11), on retrouve exactement le carré de Sallows et Schweitzer!

| 127 <sup>2</sup>      | 46 <sup>2</sup>  | 58 <sup>2</sup> |
|-----------------------|------------------|-----------------|
| <b>2</b> <sup>2</sup> | 113 <sup>2</sup> | 94 <sup>2</sup> |
| 74 <sup>2</sup>       | 82 <sup>2</sup>  | 97 <sup>2</sup> |

Et cela explique pourquoi S2 y était un carré S2 = (1²+3²+4²+11²)² = 147²

### Solution proche avec 8 sommes

| 373 <sup>2</sup> | 289 <sup>2</sup> | 565 <sup>2</sup> |
|------------------|------------------|------------------|
| 360721           | 425 <sup>2</sup> | 23 <sup>2</sup>  |
| 205 <sup>2</sup> | 527 <sup>2</sup> | 222121           |

- Obtenu par informatique, et indépendamment
  - 1997 : Lee Sallows, Université de Nijmegen, Pays-Bas
  - 1997 : Andrew Bremner, Arizona State University, USA
- OK pour les 8 sommes (3 lignes, 3 colonnes, 2 diagonales),
   mais... 7 entiers carrés sur 9
  - $S2 = 3 \cdot \text{centre} = 3 \cdot 425^2 = 541875$
- Seule solution connue de ce type

## Le problème reste ouvert

- Martin Gardner proposait 100\$ pour un carré magique 3x3 utilisant 9 entiers carrés distincts
- Je propose « travailler moins pour gagner plus »!
  - 1000€ + une bouteille de champagne pour un carré magique 3x3 utilisant au moins 7 entiers carrés distincts (différent du seul exemple connu, et de ses rotations, symétries et multiples k²)
- C'est une de mes 12 énigmes annoncées en 2010 totalisant 8000€

























A suivre dans www.multimagie.com